Nutrient Sensing Through Metabolic Transcription‐Dependent Acetylation
نویسندگان
چکیده
منابع مشابه
Nutrient sensing and metabolic decisions.
Cells have several sensory systems that detect energy and metabolic status and adjust flux through metabolic pathways accordingly. Many of these sensors and signaling pathways are conserved from yeast to mammals. In this review, we bring together information about five different nutrient-sensing pathways (AMP kinase, mTOR, PAS kinase, hexosamine biosynthesis and Sir2), highlighting their simila...
متن کاملNutrient and Metabolic Sensing in T Cell Responses
T cells play pivotal roles in shaping host immune responses in infectious diseases, autoimmunity, and cancer. The activation of T cells requires immune and growth factor-derived signals. However, alterations in nutrients and metabolic signals tune T cell responses by impinging upon T cell fates and immune functions. In this review, we summarize how key nutrients, including glucose, amino acids,...
متن کاملNutrient-sensing pathways and metabolic regulation in stem cells
Stem cells exert precise regulation to maintain a balance of self-renewal and differentiation programs to sustain tissue homeostasis throughout the life of an organism. Recent evidence suggests that this regulation is modulated, in part, via metabolic changes and modifications of nutrient-sensing pathways such as mTOR and AMPK. It is becoming increasingly clear that stem cells inhibit oxidative...
متن کاملThe tor pathway regulates gene expression by linking nutrient sensing to histone acetylation.
The Tor pathway mediates cell growth in response to nutrient availability, in part by inducing ribosomal protein (RP) gene expression via an unknown mechanism. Expression of RP genes coincides with recruitment of the Esa1 histone acetylase to RP gene promoters. We show that inhibition of Tor with rapamycin releases Esa1 from RP gene promoters and leads to histone H4 deacetylation without affect...
متن کاملRoles for PI(3,5)P2 in nutrient sensing through TORC1
TORC1, a conserved protein kinase, regulates cell growth in response to nutrients. Localization of mammalian TORC1 to lysosomes is essential for TORC1 activation. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)), an endosomal signaling lipid, is implicated in insulin-dependent stimulation of TORC1 activity in adipocytes. This raises the question of whether PI(3,5)P(2) is an essential general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2008
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.22.1_supplement.114.2